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Intro to GPDs and DVCS Model-dependent analysis Neural networks

Outline

Introduction to Generalized Parton Distributions (GPDs) and
Deeply Virtual Compton Scattering (DVCS)

Model-dependent global analysis of unpolarized target DVCS data

Neural networks approach
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Parton distribution functions

• Deeply inelastic scattering, −q2
1 →∞, xBJ ≡ −q2
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Electromagnetic form factors
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• “skewless” GPD: Hq(x , 0, t = ∆2) =
∫
db⊥ e i∆·b⊥q(x , b⊥)
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Probing the proton with two photons

• Deeply virtual Compton scattering (DVCS) [Müller ’92, et al. ’94]

γ∗

P1 P2

DVCS

−q2

1
= Q2 q2

2
= 0

γ

P = P1 + P2 , t = (P2 − P1)2

q = (q1 + q2)/2

Generalized Bjorken limit:

−q2 ' Q2/2→∞

ξ =
−q2

2P · q → const

• To leading twist-two accuracy cross-section can be expressed
in terms of Compton form factors (CFFs)

H(ξ, t,Q2), E(ξ, t,Q2), H̃(ξ, t,Q2), Ẽ(ξ, t,Q2), . . .
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Factorization of DVCS −→ GPDs

γ∗
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−q2
1 = Q2 q2

2 = 0
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• Compton form factor is a convolution:

aH(ξ, t,Q2) =

∫
dx C a(x , ξ,Q2/Q2

0) Ha(x , η = ξ, t,Q2
0)

a=NS,S(Σ,G)

• Ha(x , η, t,Q2
0) — Generalized parton distribution (GPD)
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Dispersion-relation access to GPDs at LO
[Teryaev ’05; K.K., Müller and Passek-K. ’07, ’08; Diehl and Ivanov ’07]

• LO perturbative prediction is “handbag” amplitude

H(ξ, t,Q2)
LO
=

∫ 1

−1
dx

(
1

ξ − x − iε
− 1

ξ + x − iε

)
H(x , ξ, t,Q2)

• giving access to GPD on the “cross-over” line η = x

1

π
=mH(ξ = x , t,Q2)

LO
= H(x , x , t,Q2)− H(−x , x , t,Q2)

• while dispersion relation connects it to <eH and at the most
one subtraction constant CH = −CE ; CH̃ = CẼ = 0
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dξ′
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=mH(ξ′, t,Q2)+CH(t,Q2)
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Model-dependent extraction of GPDs

• Revealing GPD H from DVCS on unpolarized proton target at
LO [K.K. and D. Müller ’09]

• Valence quarks model (ignoring Q2 evolution):

=mH(ξ, t) = π

[
4

9
Huval(ξ, ξ, t) +

1

9
Hdval(ξ, ξ, t) +

2

9
Hsea(ξ, ξ, t)

]

H(x , x , t) = n r 2α
(

2x

1 + x

)−α(t)(1− x

1 + x

)b 1(
1− 1−x

1+x
t

M2

)p .

• Fixed: n (from PDFs), α(t) (eff. Regge), p (counting rules)

αval(t) = 0.43 + 0.85 t/GeV2 (ρ, ω)

• Sea partons modelled in conformal moment space + partial
wave expansion + Q2 evolution
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• <eH determined by dispersion relations

<eH(ξ, t,Q2) =

1

π
PV

∫ 1

0
dξ′
(

1

ξ − ξ′ −
1

ξ + ξ′

)
=mH(ξ′, t,Q2)− C

(
1− t

MC
2

)2

• Typical set of free parameters:

Msea
0 , ssea, sG sea∗ quarks and gluons H

rval, Mval, bval valence H
C , MC subtraction constant (H, E )

(r̃val, M̃val, b̃val) valence H̃ (if needed)

• Global fit to 150–200 data points is fine: χ2/d .o.f . ≈ 1

∗ssea,G = strengths of subleading partial wave. LO evolution is included.
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H1 (2007), ZEUS (2008)
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HERMES (2008)

BCA ≡ dσe+ − dσe−

dσe+ + dσe−
∼ Acos 0φ

C + Acos 1φ
C cosφ ∼ <eH

BSA ≡ dσe↑ − dσe↓

dσe↑ + dσe↓
∼ Asin 1φ

LU sinφ ∼ =mH
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Result and comparison to others

[Guidal ’08, Guidal and Moutarde ’09], seven CFF fit (blue squares), [Guidal

’10] H, H̃ CFF fit (green diamonds), [Moutarde ’09] H GPD fit (red
circles)
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Models are available at WWW

• http://calculon.phy.hr/gpd/

% xs.exe

xs.exe ModelID Charge Polarization Ee Ep xB Q2 t phi

returns cross section (in nb) for scattering of lepton of energy Ee

on unpolarized proton of energy Ep. Charge=-1 is for electron.

ModelID is one of

0 debug, always returns 42,

1 KM09a - arXiv:0904.0458 fit without Hall A,

2 KM09b - arXiv:0904.0458 fit with Hall A,

3 KM10 - preliminary hybrid fit with LO sea evolution, from Trento presentation,

4 KM10a - preliminary hybrid fit with LO sea evolution, without Hall A data

5 KM10b - preliminary hybrid fit with LO sea evolution, with Hall A data

xB Q2 t phi -- usual kinematics (phi is in Trento convention)

% xs.exe 1 -1 1 27.6 0.938 0.111 3. -0.3 0

0.18584386497251
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Curse of dimensionality

• It is relatively easy to find a coin lying somewhere on 100
meter string. It is very difficult to find it on a football field.

• Similarly, in contrast to PDFs(x), it is very difficult to
perform truly model independent extraction of GPDs(x , ξ, t)
(or CFFs(ξ, t)).

• Known GPD constraints don’t decrease the dimensionality of
the GPD domain space.
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Problems with standard fitting approaches
1. Choice of fitting function introduces theoretical bias leading

to systematic error which cannot be estimated (and is likely

much larger for GPDs(x , η, t) than for PDFs(x).

→ NNets

2. Propagation of uncertainties from experiment to fitted
function is difficult. Errors in actual experiments are not
always Gaussian.

→ Monte Carlo error propagation
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Introduction to neural networks: Cat-or-dog mapping†

• How to represent function f by a computer algorithm?

• −→ neural networks, learning machines, AI

†Homage to Vladimir Igorevich Arnold
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Cat-or-dog mapping by neural network

• Parameters (“weights”) of neural network adjusted by
“training” it on many samples

• Neural network becomes a representation of function f .

• Neural networks are capable of generalization: they
successfully classify objects not seen during training
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Neural networks in high-energy physics

• Neural networks can be used
• in place of triggers (hardware NN)
• in place of simple “cuts” of detektor data (software NN)

• Used by CDF, D0, H1, BaBar, . . .

• Training usually done on Monte-Carlo simulated events

• Interpretation of NN behaviour is difficult so lot of testing is
required before results can be trusted
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Neural networks as a fitting tool

• Neural network now represents mapping f : R2 → RnF .

• Classification problem is just a special case of optimization (χ2

minimization) problem (where we have σ(xB , t) ∈ R instead of

output ∈ {cat, dog}).

• We can hope to be able to train neural networks to represent
real underlying physical law

• NN approach is successfully applied to PDF fitting by [NNPDF]

group and should be even more powerful in GPD fitting with
GPDs being less-known functions of more variables.
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Multilayer perceptron

• Essentially a least-square fit of a complicated many-parameter
function. f (x) = tanh(

∑
wi tanh(

∑
wj · · · )) ⇒ no theory

bias
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Function fitting by a neural net
• Theorem: Given enough neurons, any smooth function

f (x1, x2, · · · ) can be approximated to any desired accuracy.
Single hidden layer is sufficient (but not always most efficient).

• With simple training of neural nets to data there is a danger
of overfitting (a.k.a. overtraining)

• Solution: Divide data (randomly) into two sets: training
sample and validation sample. Stop training when error of
validation sample starts increasing.
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Example of a training with crossvalidation
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Monte Carlo propagation of errors

H, E , · · ·

Neural Net

xB, t, Q
2

x 100

H, E , · · ·

Neural Net

xB, t, Q
2

x 100

• Set of Nrep NNs defines a probability distribution in space of
possible CFF functions:

〈
F [H]

〉
=

∫
DH P[H]F [H] =

1

Nrep

Nrep∑

k=1

F [H(k)] , (1)

• Experimental uncertainties and their correlations are preserved [Giele et al. ’01]
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Toy fitting example
• Fit to data generated according to function (which we pretend

not to know).

• Fit with
1. Standard Minuit fit with ansatz f (x) = xa(1− x)b

2. Neural network fit
24 Krešimir Kumerički : Studying 3D structure of proton with neural networks



Intro to GPDs and DVCS Model-dependent analysis Neural networks

Toy fitting example
• Fit to data generated according to function (which we pretend

not to know).

• Fit with
1. Standard Minuit fit with ansatz f (x) = xa(1− x)b

2. Neural network fit
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Fit to actual HERMES BSA+BCA data

• 50 neural nets with 13 neurons in a single hidden layer
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Resulting neural network CFFs

• interpolation in data region agrees with model fits

• extrapolation results in more realistic uncertainties
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Prediction for COMPASS II BCSA

BCSA =
dσµ↓+ − dσµ↑−

dσµ↓+ + dσµ↑−
(Eµ = 160GeV)
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Summary

• Neural networks offer a powerful alternative approach to
extraction of hadron structure information from
measurements, enabling model-independent fits and
facilitating error propagation from data to resulting structure
functions.

The End
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Some properties of GPDs

• Forward limit (∆→ 0): ⇒ GPD → PDF

F q(x , 0, 0) = Hq(x , 0, 0) = θ(x)q(x)− θ(−x)q̄(−x)

• Polynomiality:

∫ 1

−1
dx x jHq(x , η, t) =

j∑

k=0,even

(2η)kAq
j+1,k(t) (even j)

• Sum rules:
∫ 1

−1
dx

{
Hq(x , η, t)
Eq(x , η, t)

=

{
F q

1 (t) Dirac
F q

2 (t) Pauli

• “Ji’s sum rule” (related to proton spin problem)

Jq =
1

2

∫ 1

−1
dx x

[
Hq(x , η, t) + Eq(x , η, t)

]
t→0

[Ji ’96]
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Modelling conformal moments of GPDs (I)
• How to model η-dependence of GPD’s Hj(η, t)?
• Idea: consider crossed t-channel process γ∗γ → pp̄

When crossing back
to DVCS channel we
have:

cos θcm → −
1

η

• . . . and dependence on θcm in t-channel is given by SO(3)
partial wave decomposition of γ∗γ scattering

H(η, . . .) = H(t)(cos θcm = −1

η
, . . .) =

∑

J

(2J+1)fJ(. . .)dJ
0,ν(cos θ)

• dJ
0,ν — Wigner SO(3) functions (Legendre, Gegenbauer,. . . )

ν = 0,±1 — depending on hadron helicities

30 Krešimir Kumerički : Studying 3D structure of proton with neural networks



App: GPD constraints App: Conformal GPDs App: (N)NLO corrections App: Other fits and predictions App: Hessian errors

Modelling conformal moments of GPDs (I)
• How to model η-dependence of GPD’s Hj(η, t)?
• Idea: consider crossed t-channel process γ∗γ → pp̄

When crossing back
to DVCS channel we
have:

cos θcm → −
1

η

• . . . and dependence on θcm in t-channel is given by SO(3)
partial wave decomposition of γ∗γ scattering

H(η, . . .) = H(t)(cos θcm = −1

η
, . . .) =

∑

J

(2J+1)fJ(. . .)dJ
0,ν(cos θ)

• dJ
0,ν — Wigner SO(3) functions (Legendre, Gegenbauer,. . . )

ν = 0,±1 — depending on hadron helicities
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Modelling conformal moments of GPDs (II)

• OPE expansion of both H and H(t) leads to

Hj(η, t) = ηj+1 H
(t)
j (cos θ = −1

η
, s(t) = t)

• and t-channel partial waves are modelled as:

γ∗ p

p
γ

m(J)

hJ,j (1− t/M2)−p

1

m(J)− t
∝ 1

J − α(t)

Hj(η, t) =

j+1∑

J

hJ,j
1

J − α(t)

1(
1− t

M2(J)

)p ηj+1−JdJ
0,ν

• Similar to “dual” parametrization [Polyakov, Shuvaev ’02]
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l-PW model — only leading partial wave

• Taking just a leading partial wave J = j + 1 gives ansatz:

Hj(ξ, t, µ
2
0) =

(
N ′Σ FΣ(t) B

(
1 + j − αΣ(0), 8

)

N ′G FG(t) B
(
1 + j − αG(0), 6

)
)

αa(t)=αa(0)+0.15t Fa(t) =
j + 1− α(0)

j + 1− α(t)

(
1− t

Ma
0

2

)−pa

. . . corresponding in forward case to PDFs of form

Σ(x) = N ′Σ x−αΣ(0) (1− x)7 ; G (x) = N ′G x−αG(0) (1− x)5

• MG
0 =

√
0.7GeV is fixed by the J/ψ production data

• Free parameters: NΣ, αΣ(0), MΣ
0 , NG , αG (0)

For small ξ (small xBj) valence quarks are less important ⇒ Σ ≈ sea
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Inclusion of subleading PW — flexible models

• [K.K. and D. Müller ’09]

Hj(η, t)=

(
N ′sea Fsea(t) B

(
1 + j − αsea(0), 8

)

N ′G FG(t) B
(
1 + j − αG(0), 6

)
)

︸ ︷︷ ︸
skewness r≈1.6 (too large)

+

(
ssea

sG

)


subleading par-
tial waves, η-
dependence!




︸ ︷︷ ︸
< 0

negative skewness

• nl-PW — addition of second PW needed for good fits

• two new parameters: ssea and sG

• nnl-PW — addition of third PW (doesn’t improve fits but
makes possible positive gluon GPDs at small Q2).
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NLO corrections
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NNLO corrections

-60

-40

-20

0

NNLO (P=2)

   NLO (P=1)

-20

0

20

10
-5

10
-4

10
-3

10
-2

10
-1

ξ

-0.1

0

0.1

0.2

10
-5

10
-4

10
-3

10
-2

10
-1

ξ

-0.1

0

0.1

0.2

δ
P
K

[%
]

δ
P
ϕ

[r
a
d
]

Q2 = 2.5GeV2

Q2 = 2.5GeV2

Q2 = 100GeV2

Q2 = 100GeV2

Thick lines:
“hard” gluon
NG = 0.4
αG (0)=αΣ(0)
+ 0.05

Thin lines:
“soft” gluon
NG = 0.3
αG (0)=αΣ(0)
− 0.02

• breakdown at small-xBj , coming from αs ln(1/xBj) behaviour
in evolution operator. Situation maybe worse for meson
production [Diehl, Kugler, Ivanov, Szymanowski, Krasnikov]

⇒ resummation needed
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Beam charge asymmetry

BCA ≡ dσe+ − dσe−

dσe+ + dσe−
=

AInterference

|ADVCS|2 + |ABH|2
LO∝ F1<eH+

|t|
4M2

F2<eE

• Model Esea as (Bsea/Nsea)Hsea and take Bsea ≡
∫
dx x Esea as a

parameter
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• We cannot extract Bsea from H1 data
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CLAS (2007)

• BSA. (Only data with |t| ≤ 0.3GeV2 used for fits.)
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Hall A (2006)
• Fit to unpolarized cross section dσ/(dxBdQ2dtdφ) ∼ <eH
• Fit is OK only with unusually large <eTDVCS (→ H̃)
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Hall A (2006) II
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Prediction for EIC cross section
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Assesment of uncertainties

• Theory predictions without appropriate uncertainties are of
limited value.

• Usual procedure: calculate Hessian matrix of second
derivatives of χ2 w.r.t. parameters ai at minimum χ2

0 . . .

Hij =
∂2χ2

∂ai∂aj
.

• . . . and propagate errors to any quantity f (ai ) via formula

(∆f )2 = T 2
∑

ij

∂f

∂ai
H−1
ij

∂f

∂aj
.

• Textbook statistics instructs us to set tolerance parameter
T = 1; this, however, usually underestimates uncertainties
(for PDFs CTEQ has T = 5− 10)
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